Содержание

Приказ о назначении ответственного за электрохозяйство: образец 2020 и 2021

Ответственный за электрохозяйство — это должностное лицо, организующее и контролирующее работу с электроустановками на предприятии.

Если на предприятии используются мощные электроустановки, необходим сотрудник, который будет отвечать за их безопасность. Это может быть как член руководства, так и специалист, имеющий достаточную квалификацию. Ответственный за электрохозяйство (требования по новым правилам 2020) должен также иметь заместителя, если потребляемая мощность подконтрольной ему установки превышает десять киловатт.

Законодательная база

В соответствии с пунктом 1.2.1 Приказа Министерства энергетики № 6 от 13.01.2003, работать с электроустановками может только электротехнический персонал, прошедший соответствующую подготовку.

Пункт 1.2.3 предписывает руководителю организации, являющейся электропотребителем, издать приказ об ответственном за электрохозяйство и его заместителе. Если в штате есть главный энергетик, эти обязанности можно передать ему.

Без ответственного лица разрешается обойтись на предприятиях, где электрохозяйство ограничивается:

  • вводно-распределительными устройствами;
  • осветительными установками;
  • переносным оборудованием;
  • потребляемым напряжением до 380 вольт.

Тогда полномочия по обеспечению безопасности в этой сфере ложатся на руководителя. Однако ему необходимо подать заявление-обязательство по форме из Приложения 1 к рассматриваемому Приказу в территориальное управление Госэнергонадзора (бланк можно скачать в конце статьи).

Кого назначить

Прежде чем рассматривать образец приказа о назначении лица, ответственного за электрохозяйство, стоит определиться с тем, кто в нем будет фигурировать. При выборе кандидата нужно соблюсти ряд условий:

  1. Оформление по трудовому договору. Сотрудник, работающий по ГПХ, не подойдет. Главный по электробезопасности должен быть в штате.
  2. Вхождение в административно-технический персонал. Он должен иметь непосредственное отношение к электрооборудованию, владеть навыками обращения с ним.
  3. Прохождение проверки знаний. Необходимая группа зависит от рабочего напряжения, с которым организация имеет дело. Если она меньше тысячи вольт, то группа по электробезопасности у претендента должна быть четвертая, если больше — пятая.

Как назначить

Следует закрепить эту должность в двух аспектах. В первую очередь необходимо зафиксировать наделение специалиста соответствующими функциями с точки зрения трудового законодательства. После этого можно заполнять образец общего приказа по электрохозяйству и включать туда назначенное должностное лицо.

Передавать полномочия можно только после того, как претендент сдал экзамены в комиссии Ростехнадзора. Работник должен получить удостоверение, подтверждающее успешное прохождение программы.

Также в журнале учета проверки знаний необходимо проставить ведомственный штамп о том, что работник знаком с правилами эксплуатации электроустановок.

Через год назначенный будет сдавать экзамен повторно. Если он этого не сделает, административную ответственность понесет руководитель организации.

Образец приказа: ответственный за электрохозяйство

Строго регламентированной формы этого документа нет. Однако следует отразить в нем следующие обязательные элементы:

  1. Цели и задачи. Лицо нужно назначать не только для соблюдения законодательных требований, но и для конкретных производственных нужд.
  2. Информация о лице. Это его Ф.И.О., основная должность, сведения о прохождении аттестации.
  3. Ответственность. Если есть отдельная должностная инструкция, можно сделать краткую выжимку из нее или просто сослаться на этот документ.

Нельзя забывать и о стандартных пунктах — номер, дата и место издания, контроль за выполнением, подпись руководства.

Если назначается еще и заместитель, информацию о нем можно включить в этот же документ.

Что указать в должностной инструкции

Ничего принципиально нового создавать не придется. Основу можно взять из пункта 1.2.6 упомянутого приказа. Все основные обязанности изложены там достаточно подробно. Однако их лучше прочитать внимательно, чтобы при обнаружении лишнего исключить тот или иной пункт.

Вне зависимости от специфики организации обязательно должны присутствовать такие обязанности, как поддержание порядка допуска, контроль за расходом энергии, организация ремонта и ведение документации.

Дополнительно в инструкции стоит указать:

  • какие права имеет сотрудник;
  • какую ответственность и за что он несет лично;
  • как он взаимодействует с другими подразделениями и топ-менеджментом.

Все это следует брать из локальных актов предприятия.


Заявление-обязательство

Образец приказа о назначении ответственного за электробезопасность 2020

Правовые документы

Кадровый портал – Error

Организация работы и кадровые вопросы в связи с коронавирусомОбразцы основных документов в связи с коронавирусомНерабочие дни в связи с коронавирусом

Образцы заполнения кадровых документовФормы первичных учетных документовСведения о трудовой деятельности (электронная трудовая книжка)Ведение трудовых книжек в бумажном виде

Специальная оценка условий трудаНесчастный случай на производствеОбязательные медосмотры (профосмотры)Инструктажи по охране труда

Обязательные документы при проверкахКалендарь кадровика

Хранение и использование персональных данныхМеры по защите персональных данных работниковОтветственность за нарушения законодательства о персональных данных

Привлечение иностранцевОформление иностранцев

Оформление приема на работуТрудовой договор

График отпусковЗамена отпуска денежной компенсациейОформление ежегодного оплачиваемого отпускаОтпуск по беременности и родамОтпуск по уходу за ребенкомЛьготный (дополнительный) отпуск

График работыПривлечение, оформление и оплатаУчет рабочего времениВыходные и праздничные дни

Правила внутреннего трудового распорядка (ПВТР)Дисциплинарные взысканияПорядок увольнения за нарушение трудовой дисциплины

Заработная платаРайонные коэффициенты и надбавкиМатериальная ответственность работника

Оплата больничного листа (не пилотный проект)Оплата больничного листа (пилотный проект)Заполнение больничного листа работодателемРабота с электронными больничнымиПособие по беременности и родам

Порядок проведения аттестацииОграничения на увольнение из-за непрохождения аттестацииРасходы на подготовку и переподготовку кадров

Основания для увольненияПроцедура увольнения по сокращению

Перейти в telegram-чат

Кадровый портал – Error

Организация работы и кадровые вопросы в связи с коронавирусомОбразцы основных документов в связи с коронавирусомНерабочие дни в связи с коронавирусом

Образцы заполнения кадровых документовФормы первичных учетных документовСведения о трудовой деятельности (электронная трудовая книжка)Ведение трудовых книжек в бумажном виде

Специальная оценка условий трудаНесчастный случай на производствеОбязательные медосмотры (профосмотры)Инструктажи по охране труда

Обязательные документы при проверкахКалендарь кадровика

Хранение и использование персональных данныхМеры по защите персональных данных работниковОтветственность за нарушения законодательства о персональных данных

Привлечение иностранцевОформление иностранцев

Оформление приема на работуТрудовой договор

График отпусковЗамена отпуска денежной компенсациейОформление ежегодного оплачиваемого отпускаОтпуск по беременности и родамОтпуск по уходу за ребенкомЛьготный (дополнительный) отпуск

График работыПривлечение, оформление и оплатаУчет рабочего времениВыходные и праздничные дни

Правила внутреннего трудового распорядка (ПВТР)Дисциплинарные взысканияПорядок увольнения за нарушение трудовой дисциплины

Заработная платаРайонные коэффициенты и надбавкиМатериальная ответственность работника

Оплата больничного листа (не пилотный проект)Оплата больничного листа (пилотный проект)Заполнение больничного листа работодателемРабота с электронными больничнымиПособие по беременности и родам

Порядок проведения аттестацииОграничения на увольнение из-за непрохождения аттестацииРасходы на подготовку и переподготовку кадров

Основания для увольненияПроцедура увольнения по сокращению

Перейти в telegram-чат

Кадровый портал – Error

Организация работы и кадровые вопросы в связи с коронавирусомОбразцы основных документов в связи с коронавирусомНерабочие дни в связи с коронавирусом

Образцы заполнения кадровых документовФормы первичных учетных документовСведения о трудовой деятельности (электронная трудовая книжка)Ведение трудовых книжек в бумажном виде

Специальная оценка условий трудаНесчастный случай на производствеОбязательные медосмотры (профосмотры)Инструктажи по охране труда

Обязательные документы при проверкахКалендарь кадровика

Хранение и использование персональных данныхМеры по защите персональных данных работниковОтветственность за нарушения законодательства о персональных данных

Привлечение иностранцевОформление иностранцев

Оформление приема на работуТрудовой договор

График отпусковЗамена отпуска денежной компенсациейОформление ежегодного оплачиваемого отпускаОтпуск по беременности и родамОтпуск по уходу за ребенкомЛьготный (дополнительный) отпуск

График работыПривлечение, оформление и оплатаУчет рабочего времениВыходные и праздничные дни

Правила внутреннего трудового распорядка (ПВТР)Дисциплинарные взысканияПорядок увольнения за нарушение трудовой дисциплины

Заработная платаРайонные коэффициенты и надбавкиМатериальная ответственность работника

Оплата больничного листа (не пилотный проект)Оплата больничного листа (пилотный проект)Заполнение больничного листа работодателемРабота с электронными больничнымиПособие по беременности и родам

Порядок проведения аттестацииОграничения на увольнение из-за непрохождения аттестацииРасходы на подготовку и переподготовку кадров

Основания для увольненияПроцедура увольнения по сокращению

Перейти в telegram-чат

Приказ о назначении лица, ответственного за электрохозяйство: бланк, образец 2021

                    ____________________________________
(наименование организации)

Приказ

    00.00.0000
----------                                                       N ____

Москва

“О назначении лица, ответственного за электрохозяйство”

На основании ввода в действие Правил технической эксплуатации электроустановок потребителей, утвержденных Приказом Минэнерго России от 13.01.2003 N 6, Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001, РД 153-34.0-03.150-00, утвержденных Постановлением Минтруда России от 05.01.2001 N 3 и Приказом Минэнерго России от 27.12.2000 N 163, и в целях организации должного технического надзора за безопасной эксплуатацией объектов Ростехнадзора

    приказываю:
1. Назначить ответственным за электрохозяйство в ______________________
(наименование
___________________ - __________________ - ________________________________
организации)               (Ф.И.О.)        (работник из числа руководителей
________________,  прошедшего  проверку  знаний  норм  и  правил  работы  в
и специалистов)
электроустановках __________________________ с присвоением группы ______ по
(дата проверки знаний)
электробезопасности  в  электроустановках   выше  (до)  1000 Вв  комиссией,
назначенной ___________________________________________.
(территориальный орган Ростехнадзора)
2. На периоды отсутствия _______________________ (отпуск, командировки,
(фамилия, инициалы)
болезнь) обязанности лица, ответственного за электрохозяйство, возложить на
____________________________________ (группа _____ по электробезопасности).
(должность, фамилия, инициалы)
3.  Утвердить   Порядок   работы   с   персоналом,   эксплуатирующим  и
организующим эксплуатацию электроустановок (приложение 1).
4. Ответственному  за  электрохозяйство и работнику, его замещающему, в
своей  работе  руководствоваться  действующими   нормативно-техническими  и
правовыми  документами,  а также  должностными  инструкциями,  учитывающими
обязанности, права и взаимоотношения ответственного за электрохозяйство.
5. Начальнику отдела кадров ___________________________ ознакомить моих
(фамилия, инициалы)
заместителей,   руководителей  подразделений  и  служб,  лиц  в  части,  их
касающейся, под роспись.
6. Контроль за исполнением  настоящего  приказа  возложить  на главного
инженера _________________________.
(фамилия, инициалы)

Генеральный директор _________________________
(инициалы, фамилия)

Визы:

Источник – “Охрана труда и техника безопасности в сельском хозяйстве”, 2012, № 6

форма документа, пояснения к заполнению, посмотреть образец

Согласно требованиям п. 1.2.3 Правил технической эксплуатации электроустановок потребителей, утв. Приказом Министерства энергетики РФ от 13.01.2003 N 6:

Для непосредственного выполнения обязанностей по организации эксплуатации электроустановок руководитель Потребителя (кроме граждан – владельцев электроустановок напряжением выше 1000 В) соответствующим документом назначает ответственного за электрохозяйство организации (далее – ответственный за электрохозяйство) и его заместителя.

У Потребителей, установленная мощность электроустановок которых не превышает 10 кВА, работник, замещающий ответственного за электрохозяйство, может не назначаться.

Ответственный за электрохозяйство и его заместитель назначаются из числа руководителей и специалистов Потребителя.

При наличии у Потребителя должности главного энергетика обязанности ответственного за электрохозяйство, как правило, возлагаются на него. 

Согласно требованиям п. 2. Примечания Приложения 1 к  Правилам  по охране труда при эксплуатации электроустановок, утв. Приказ Минтруда России от 24.07.2013 N 328н:

Группа I по электробезопасности распространяется на неэлектротехнический персонал (не относящийся к электротехническому и электротехнологическому персоналу). Перечень должностей, рабочих мест, требующих отнесения производственного персонала к группе I, определяет руководитель организации (обособленного подразделения). Персоналу, усвоившему требования по электробезопасности, относящиеся к его производственной деятельности, присваивается группа I с оформлением в журнале, который должен содержать фамилию, имя, отчество работника, его должность, дату присвоения группы I по электробезопасности, подпись проверяемого и проверяющего. Присвоение группы I производится путем проведения инструктажа, который, как правило, должен завершаться проверкой знаний в форме устного опроса и (при необходимости) проверкой приобретенных навыков безопасных способов работы или оказания первой помощи при поражении электрическим током. Присвоение I группы проводится работником из числа электротехнического персонала, имеющего группу III по электробезопасности, назначенным распоряжением руководителя организации.

Приказ о назначении ответственного за электрохозяйство

В компаниях обычно присутствует человек, ответственный за электрохозяйство. Этот специалист несет полную ответственность за манипуляции с электрическим оборудованием и электросетями. При выявлении нарушений, в зависимости от их тяжести его могут привлечь не только к дисциплинарной, но также административной и уголовной ответственности. Чтобы назначить специалиста на подобную должность на предприятии издается соответствующий приказ. Его обязательно подписывает руководитель. Только с этого момента специалист приступает к соответствующим обязанностям.

Необходимость издания приказа

У организаций существует обязательство издания специального приказа о назначении лица, ответственного за электрохозяйство. Требуется он для предъявления контролирующим инстанциям при проведении проверок. К таким организациям относятся:

  • Ростехнадзор;
  • Служба пожарной безопасности;
  • иные подобные.

Организация вправе не утверждать сотрудника на эту должность, если сможет доказать отсутствие стационарных электроустановок. Тогда подобные обязанности вправе на себя документально возложить управляющий. При проведении проверочных мероприятий бумагу придется показать контролирующей инстанции. В жизни, подобное почти не практикуется. Ведь в каждом офисе присутствует холодильник, компьютер или копировальная техника. Все это оборудование относится к стационарному оборудованию. Даже примитивный небольшой магазинчик имеет холодильное оборудование. В таком случае обязанности можно возложить на руководителя.

Приказ требуется не только при проверочных мероприятий, но так же при возникновении чрезвычайной ситуации. Опираясь на этот документ, комиссией устанавливается виновное лицо допущенного нарушения.

Также этот приказ требуется для официального подтверждения вступления в должность. Только при его подписании ответственность ложится на специалиста.

Кто назначается ответственным лицом

Назначить на эту должность можно любого специалиста организации, прошедший соответствующее обучение и аттестацию. Обычно, по завершении экзамена специалисту присваивается 4 или 5 категория электробезопасности.

Группы безопасности дают возможность обслуживать оборудование с определенными ваттами:

  • специалисты с 4 группой вправе обслуживать оборудование до 1000 ватт;
  • сотрудники с 5 группой могут работать с оборудованием с большим показателем.

Пятая категория требуется для обслуживания крупных предприятий:

  • заводы и фабрики;
  • больницы;
  • частные производственные цеха;
  • и тому подобное.

Вообще данный специалист должен иметь и заместителя. На маленькие организации не всегда могут себе позволить дополнительную единицу. Поэтому, допускается возложить эти обязанности на другого специалиста предприятия. Только следует учитывать, что на эту должность назначить можно руководителя. Технический персонал сюда не подойдет.

Процедура назначения

Назначением ответственного лица занимается руководитель предприятия. Он же занимается проверкой исполнения изданного и утвержденного приказа. Также руководитель должен организовать ежегодную аттестацию человека на этой должности.

Вступать в обязанности специалист подобного уровня вправе после прохождения соответствующего экзамена. На эту должность можно назначить только специалиста с группой безопасности не ниже четвертой.

Ответственный за электрохозяйство

После сдачи аттестации на руки специалисту выдается:

  • удостоверение, свидетельствующее о проверке знаний;
  • ксерокопия протокола заседания комиссии;
  • журналы по проверки знаний норм электробезопасности;
  • журналы раздачи и учета средств защиты;
  • приказ о назначении.

Утверждение специалиста ответственным лицом выражено в подписании соответствующего приказа. Каждый год, ответственный за электрохозяйство специалист обязан проходить аттестацию. Обязанность директора предприятия контролировать это.

Аттестация проходит в виде экзамена, после него специалисту присваивается группа электробезопасности и выдается специальное удостоверение.

Как правильно составить приказ

Любой приказ предприятия имеет форму, утвержденную действующими стандартами. При этом, нет строгих требований. Приказ учитывает особенности индивидуальных организаций в отдельности.

Существуют обязательные пункты, входящие в состав такого приказа:

  • обозначение даты проведения последней аттестации;
  • обозначение факта обеспечения контроля, за проведением ежегодной аттестации на руководителя;
  • права и обязанности ответственного лица в виде списка;
  • личные данные ответственного специалиста, включая должность;
  • полная информация о заместителе;
  • обозначение группы электробезопасности. Только работник с 4 и 5 группой электробезопасности может выступать ответственным лицом.

Несмотря на то, что есть конкретная форма подобных приказов, допускается видоизменять ее на усмотрение организации. Подобные действия не будут относиться к нарушению законодательства. Это тесно взаимосвязано с индивидуальной спецификой деятельности различных предприятий. При этом, нельзя исключить основные пункты этого документа.

Ответственного специалиста рекомендуется привязывать к юридическому адресу. Это позволяет назначать его ответственным лицом сразу на несколько точек, что значительно экономит время и деньги организации на проведение аттестаций.

Особенности

Как уже говорилось выше, ответственным лицом за электрохозяйство могут назначаться сотрудники, прошедшие соответствующую аттестацию и получившие 4 и 5 категорию электробезопасности.

Подписание приказа

Вполне закономерно возникает вопрос, для чего необходимы более низкие группы. Первая категория дает право работникам пользоваться электроинструментом, бытовой и офисной техникой. Здесь нет необходимости проходить обучения.

Что касается второй и третьей группы, они присваиваются сотрудникам, которые самостоятельно могут обслуживать оборудование. При этом, лица со второй группой вправе обслуживать только выключенное оборудование.

Все три категории электробезопасности присваиваются работникам предприятия, без проведения какой – либо аттестации. Достаточно только соответствующего приказа по предприятию.

Некоторые основные моменты оформления ответственного лица за электрохозяйство:

  • Законодательство гласит о назначении ответственного сотрудника за электробезопасность на каждом предприятии. Выполнить это требование не всегда получается. Некоторые организации даже не имею оборудования.
  • Ответственное лицо за электробезопасность должно назначаться во всех компаниях по закону. Но, когда в компании есть только оргтехника, возложить обязанности можно на директора. При этом, мощность приборов может быть не меньше 380 ватт. Сюда можно отнести:
  • магазин;
  • туристическое агентство;
  • юридическая контора или нотариус;
  • и т. д.

Что такое коммерческая тайна и как составить соглашение о ее неразглашении? Читайте тут.

Здесь вы узнаете, как составить приказ об изменении оклада и правильно оформить его.

О заполнении журнала регистрации приказов по личному составу вы узнаете тут.

Но, согласовать возможность наложения ответственности на директора рекомендуется с органом Ростехнадзора.

  • Допускается назначение на эту должность сотрудника, трудящегося по совместительству. Но, это возможно, если на территории отсутствуют установки, превышающие 1000 ватт.
  • Если организация включает несколько филиалов, достаточно одного специалиста. Но, оформлен он должен быть по юридическому адресу компании.
  • Специалист несет материальную ответственность за все оборудование.
  • Лицо, ответственное за электрохозяйство может нести административную, уголовную и дисциплинарную ответственность.

При оформлении приказа и назначении ответственного лица за электрохозяйство рекомендуется учитывать все вышеперечисленные особенности. Также следует придерживаться правил делопроизводства при написании этого документа. Допущение ошибок не приемлемо при составлении приказов. При обнаружении недочетов предприятие может привлекаться к ответственности.

Законодательство предписывает назначение ответственного лица за электробезопасность во всех организациях. Делает это руководитель в форме приказа по предприятию. Ежегодно, ответственный специалист должен проходить соответствующую аттестацию с присвоением группы электробезопасности. Если организация маленькая, допускается возложить обязанность на директора.

Основы электрических испытаний

Работа специалиста по тестированию состоит в том, чтобы знать, какой элемент тестового оборудования использовать для решения поставленной задачи, а также понимать ограничения используемого тестового оборудования.

Электрические испытания в своей основной форме – это приложение напряжения или тока к цепи и сравнение измеренного значения с ожидаемым результатом. Электрическое испытательное оборудование проверяет математические расчеты схемы, и каждая единица испытательного оборудования предназначена для конкретного применения.

Работа специалиста по тестированию состоит в том, чтобы знать, какое тестовое оборудование использовать для решения поставленной задачи, а также понимать ограничения используемого тестового оборудования. В этой статье мы рассмотрим наиболее распространенные образцы испытательного оборудования, используемого в полевых условиях.

Электрическое испытательное оборудование следует рассматривать как источник смертельной электрической энергии. Технические специалисты должны соблюдать все предупреждения по технике безопасности и соблюдать все практические меры предосторожности для предотвращения контакта с частями оборудования и соответствующими цепями, находящимися под напряжением, включая использование соответствующих средств индивидуальной защиты.

Связано: Обзор средств индивидуальной защиты от поражения электрическим током и дугового разряда


Мультиметр

Цифровые мультиметры – наиболее распространенный вид измерителей, используемых сегодня. Фотография: “ Fluke

”.

Также известный как VOM (вольт-омметр), мультиметр – это портативное устройство, которое объединяет несколько функций измерения (таких как напряжение, ток, сопротивление и частота) в одном устройстве.

Мультиметры

в основном используются для диагностики электрических проблем в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателями, бытовые приборы, источники питания и системы электропроводки.

Цифровые мультиметры – наиболее распространенный вид измерителей, используемых сегодня; однако аналоговые мультиметры все же предпочтительнее в некоторых случаях, например, при мониторинге быстро меняющегося значения или чувствительных измерениях, таких как проверка полярности трансформатора тока.


Мегомметр

Мегомметры – одно из наиболее часто используемых испытательных устройств. Фото: TestGuy

Мегаомметр, который чаще всего называют просто мегомметром, представляет собой особый тип омметра, который используется для измерения электрического сопротивления изоляторов.

Значения сопротивлений мегомметрами могут находиться в диапазоне от нескольких МОм до нескольких миллионов МОм (тераом). Мегомметры вырабатывают высокое напряжение через внутреннюю схему с батарейным питанием или ручной генератор с выходным напряжением от 250 до 15 000 вольт.

Мегомметры являются одними из наиболее часто используемых единиц испытательного оборудования и могут использоваться для измерения изоляции различных типов оборудования, таких как автоматические выключатели, трансформаторы, распределительное устройство и кабели.

Связано: Основное испытательное оборудование: Тестер сопротивления изоляции


Омметр низкоомный

10A DLRO (слева) и 100A DLRO (справа).Фотография: Megger

.

Этот низкоомный омметр, часто называемый в полевых условиях DLRO, используется для высокоточных измерений сопротивления ниже 1 Ом. Омметры с низким сопротивлением вырабатывают токи постоянного тока низкого напряжения от батареи с выходным током до 100 А.

Измерение сопротивления достигается с помощью четырех клемм, называемых контактами Кельвина. Две клеммы несут ток от измерителя (C1, C2), а два других позволяют измерителю измерять напряжение на резисторе (P1, P2).В измерителе этого типа любое падение напряжения, вызванное сопротивлением первой пары проводов и их контактным сопротивлением, не учитывается измерителем.

Омметры с низким сопротивлением

являются одними из наиболее часто используемых единиц испытательного оборудования и могут использоваться для измерения сопротивления различных типов устройств, таких как автоматический выключатель и переключающие контакты, кабель и шинопровод, трансформаторы и генераторы, обмотки двигателя и предохранители. .


Набор для проверки гипотенциала (AC / DC / VLF)

Испытательные комплекты Hipot состоят из высоковольтного провода, возвратного провода и заземляющего провода.Фото: HV, Inc.

.

Испытание на устойчивость к диэлектрику (или испытание на высоковольтное сопротивление) проверяет хорошую изоляцию в аппаратуре среднего и высокого напряжения, в отличие от испытания на целостность цепи. Изоляция нагружена выше номинальных значений, чтобы гарантировать минимальные токи утечки из изоляции на землю.

Испытательные комплекты Hipot состоят из высоковольтного провода, возвратного провода и заземляющего провода. Высоковольтный провод подключается к тестируемому устройству, при этом все остальные компоненты заземляются, и результирующий ток измеряется через обратную цепь.

Если протекает слишком большой обратный ток, сработает внутренняя защита испытательного комплекта. Hipot-испытание – это испытание на ходу, а это значит, что ток утечки не должен отключать испытательный комплект, но минимально допустимое значение отсутствует.

Выходное напряжение может находиться в диапазоне от 1 кВ до 100 кВ + переменного тока при частоте сети или постоянного тока в зависимости от тестируемого устройства. Испытание на устойчивость к очень низкой частоте (VLF) – это применение синусоидального сигнала переменного тока, обычно с частотой 0,01 0,1 Гц, для оценки качества электрической изоляции в высоких емкостных нагрузках, таких как кабели.

Связано: Обзор тестирования и диагностики силового кабеля


Набор для сильноточных испытаний (от 500A до 15000A +)

Сильноточный испытательный комплект первичного впрыска с присоединенным выключателем. Фотография: Megger

.

Сильноточный испытательный комплект может состоять из двух частей, известных как блок управления и блок вывода, или эти функции могут быть объединены в одном корпусе. Низковольтные и сильноточные выходы используются для проверки первичного впрыска выключателей низкого напряжения.

Испытательный комплект с высоким током или первичной инжекцией состоит из больших трансформаторов, которые понижают линейное напряжение (например, 480 В) до очень низкого уровня, например 2-15 В. Большое снижение напряжения позволяет значительно увеличить доступный выходной ток (15 кА +), особенно на короткое время.

Токовый выход управляется переключателем ответвлений и переменным резистором. Встроенные таймеры отображают период между включением и отключением тока, чтобы указать, сколько времени требуется для отключения автоматического выключателя.

Автоматические выключатели можно подключать напрямую к сильноточной испытательной установке через шину или кабель. В зависимости от размера, этот тип испытательного оборудования может также использоваться для проверки реле тока замыкания на землю и других реле тока путем прямого подключения к шине распределительного устройства.


Вторичный испытательный набор

Вторичные испытательные комплекты разработаны производителями расцепителей для использования с расцепителями одного типа или семейства с использованием специального подключения. Фотография: Switchserve

. Автоматические выключатели

с полупроводниковыми и микропроцессорными расцепителями можно проверить, подав вторичный ток непосредственно в расцепитель, а не пропуская первичный ток через трансформаторы тока с использованием испытательного комплекта для сильноточного тока.Основным недостатком метода проверки подачи вторичного тока является то, что проверяются только логика и компоненты твердотельного расцепителя.

Вторичные испытательные комплекты разработаны производителями расцепителей для использования с расцепителями одного типа или семейства с использованием специального подключения. Наборы для испытаний могут варьироваться от простых ручных, кнопочных по дизайну до более сложных чемоданов, которые работают аналогично испытательному комплекту для первичного впрыска.

Переносные блоки

часто используются для отключения защитных функций расцепителей, таких как замыкание на землю, при проверке автоматических выключателей через первичный ввод.

Связано: Тестирование первичной и вторичной подачи для автоматических выключателей


Набор для проверки реле

Комплекты для проверки реле

оснащены несколькими источниками для проверки твердотельной и многофункциональной цифровой защиты. Фото: TestGuy

Это симуляторы энергосистем, используемые для тестирования устройств защиты, используемых в промышленных и энергетических системах. Испытательные комплекты реле оснащены несколькими источниками для проверки твердотельной и многофункциональной цифровой защиты, каждый канал напряжения и тока работает независимо для создания различных условий энергосистемы.

Высококачественное испытательное оборудование реле может проверять не только простые реле напряжения, тока и частоты, но и сложные схемы защиты, такие как защита линии с помощью связи и схемы защиты, в которых используются IED (интеллектуальные электронные устройства), соответствующие стандарту IEC61850.

Связано: Проверка и техническое обслуживание реле защиты


Набор для проверки коэффициента мощности

Примеры оборудования для проверки коэффициента мощности. Фото: TestGuy

Наборы для измерения коэффициента мощности

обеспечивают комплексный диагностический тест изоляции переменного тока для высоковольтного оборудования, такого как трансформаторы, вводы, автоматические выключатели, кабели, грозовые разрядники и вращающееся оборудование.

Испытательные напряжения обычно составляют 12 кВ и ниже, набор для проверки коэффициента мощности измеряет напряжение и ток тестируемого устройства с использованием эталонного импеданса. Все представленные результаты, включая потерю мощности, коэффициент мощности и емкость, получены из векторных значений напряжения и тока.

Испытания проводятся путем измерения емкости и коэффициента рассеяния (коэффициента мощности) образца. Измеренные значения изменятся при возникновении нежелательных условий, таких как наличие влаги на изоляции или внутри нее; наличие токопроводящих загрязняющих веществ в изоляционном масле, газе или твердых телах; наличие внутренних частичных разрядов и т. д.

Тестовые соединения включают один провод высокого напряжения, (2) провода низкого напряжения и заземление. Защитные выключатели и стробоскоп включены для защиты оператора, а датчик температуры используется для корректировки значений теста. Комплекты для проверки коэффициента мощности обычно работают с портативным компьютером, подключенным через USB или Ethernet.

Связано: 3 основных режима проверки коэффициента мощности


Набор для испытания сопротивления обмотки

Примеры оборудования для испытания сопротивления обмоток трансформатора.Фото: TestGuy

Измерение сопротивления обмотки – важный диагностический инструмент для оценки возможных повреждений обмоток трансформатора и двигателя. Сопротивление обмоток в трансформаторах изменится из-за короткого замыкания витков, слабых соединений или ухудшения контактов в переключателях ответвлений.

Измерения получаются путем пропускания известного постоянного тока через тестируемую обмотку и измерения падения напряжения на каждой клемме (закон Ома). Современное испытательное оборудование для этих целей использует мост Кельвина для достижения результатов; Вы можете представить себе набор для измерения сопротивления обмоток как очень большой омметр с низким сопротивлением (DLRO).

Комплекты для измерения сопротивления обмоток имеют (2) токовые провода, (2) провода напряжения и (1) заземляющий провод. Типичный диапазон тока комплекта для проверки сопротивления обмотки составляет 1–50 А. Было обнаружено, что более высокие токи сокращают время испытаний на сильноточных вторичных обмотках.

Связано: Описание испытаний сопротивления обмотки трансформатора


Набор для измерения коэффициента трансформации трансформатора (TTR)

Схема подключения тестирования трехфазного ТТР. Фото: EEP.

Испытательный комплект TTR подает напряжение на высоковольтную обмотку трансформатора и измеряет результирующее напряжение на обмотке низкого напряжения. Это измерение известно как коэффициент трансформации.Помимо коэффициента трансформации, блоки измеряют ток возбуждения, отклонение фазового угла между обмотками высокого и низкого напряжения и ошибку соотношения в процентах.

Комплекты для измерения коэффициента трансформации трансформатора

бывают разных стилей и различных типов соединений, однако все тестеры коэффициента трансформации имеют как минимум два верхних вывода и два нижних вывода. Напряжение возбуждения испытательного комплекта TTR обычно меньше 100 В.

Связано: Введение в испытание коэффициента трансформации трансформатора


Набор для испытаний трансформатора тока

Пример испытательного оборудования трансформатора тока

Фото: Megger

Испытательные комплекты

CT – это небольшие многофункциональные устройства, предназначенные для проведения испытаний на размагничивание, соотношение, насыщение, сопротивление обмотки, полярность, отклонение фазы и изоляцию трансформаторов тока.Высококачественное испытательное оборудование ТТ может напрямую подключаться к ТТ с несколькими передаточными числами и выполнять все испытания на всех ответвлениях одним нажатием кнопки и без замены проводов.

Трансформаторы тока

можно испытывать в конфигурации оборудования, например, при установке в трансформаторы, масляные выключатели или распределительные устройства. Современный трансформатор тока с несколькими выходами по напряжению и току может использоваться в качестве испытательного комплекта реле при работе с портативным компьютером.

Связано: Объяснение 6 электрических испытаний трансформаторов тока


Набор для испытания атмосферных условий магнетрона (MAC)

Пример испытательного комплекта для испытания атмосферных условий магнетрона (MAC).Фото: Испытание вакуумного прерывателя

Традиционные полевые испытания вакуумных прерывателей используют испытание с высоким потенциалом для оценки электрической прочности бутылки. Это испытание дает результат годен / не годен, который не определяет, когда или если давление газа внутри баллона снизилось. упал до критического уровня. В отличие от hipot-теста, тестирование вакуумных прерывателей с использованием принципов магнетронных атмосферных условий (MAC) может обеспечить жизнеспособные средства для определения состояния вакуумных прерывателей до отказа.

Тест магнитного поля настраивается путем простого помещения вакуумного прерывателя в катушку возбуждения, которая создает постоянный ток, который остается постоянным во время теста. К разомкнутым контактам прикладывается постоянное напряжение постоянного тока, обычно 10 кВ, и измеряется ток, протекающий через VI.


Набор для проверки сопротивления заземления

Оборудование для проверки сопротивления заземления с принадлежностями. Фотография: AEMC

.

Комплект для проверки сопротивления заземления работает путем подачи тока в землю между испытательным электродом и удаленным зондом, измеряет падение напряжения, вызванное почвой, до заданной точки, а затем использует закон Ома для расчета сопротивления.

Наборы для испытания сопротивления заземления

представлены в различных стилях, наиболее распространенными из которых являются 4-контактный блок для проверки удельного сопротивления грунта и 3-контактный блок для тестирования падения потенциала. Медные стержни или аналогичные стержни используются для контакта с землей вместе с катушками с небольшими многожильными проводами для измерения больших расстояний.

Измерительные клещи для измерения сопротивления заземления измеряют сопротивление заземляющего стержня и сети без использования вспомогательных заземляющих стержней. Они предлагают точные показания без отключения тестируемой системы заземления, но имеют ограничения.

Связано: 4 Важные методы проверки сопротивления заземления


Регистратор мощности

Существует много различных типов регистраторов мощности, которые различаются по размеру, точности и вместимости. Фотография: “ Fluke

”. Регистраторы мощности

– это устройства, используемые для сбора данных о напряжении и токе, которые можно загрузить в программное обеспечение для анализа состояния электрической системы. Это инструменты для поиска и устранения неисправностей, которые используются для выявления электрических проблем, таких как скачки напряжения, провалы, мерцание и низкий коэффициент мощности.

Регистраторы мощности

также могут использоваться для измерения энергопотребления за определенный период времени, что полезно для инженеров, планирующих расширение системы, или для клиентов, желающих проверить свои счета за электроэнергию. Существует много различных типов регистраторов мощности, которые различаются по размеру, точности и вместимости.

Установка трехфазного регистратора мощности включает в себя обертывание проводов трансформаторами тока с разъемным сердечником и отсечение ряда выводов от напряжения системы и заземления. Регистратор настроен для измерения в соответствии с конфигурацией системы в течение определенного периода времени, а также его можно просматривать в режиме реального времени с помощью ПК или встроенного экрана.


Инфракрасная камера

Инфракрасные камеры

доступны в различных стилях и разрешениях. Какая камера лучше всего подходит для проверки, зависит от типа проверяемого оборудования и условий окружающей среды. Фото: TestGuy

Тепловизоры – это камеры, которые обнаруживают невидимое инфракрасное излучение и преобразуют эти данные в цветное изображение на экране. Инфракрасные камеры чаще всего используются для проверки целостности электрических систем, поскольку процедуры тестирования являются бесконтактными и могут выполняться быстро при работающем оборудовании.

Сравнение тепловых характеристик нормально работающего оборудования и оборудования, которое оценивается на предмет аномальных условий, является отличным средством поиска и устранения неисправностей. Даже если аномальное тепловое изображение до конца не изучено, его можно использовать для определения необходимости дальнейшего тестирования.

Тепловизоры классифицируются по точности и разрешающей способности детектора. Инфракрасные камеры высокого класса отличаются захватом изображений с высоким разрешением и точностью измерения температуры до десятых долей градуса или меньше.

Связанный: Инфракрасная термография для электрических распределительных систем


Тестер вибрации

Во время работы тестируемой машины акселерометр определяет ее вибрацию в трех плоскостях движения (вертикальной, горизонтальной и осевой). Фотография: Brithinee Electric

.

Анализаторы вибрации используются для выявления и обнаружения наиболее распространенных механических неисправностей (подшипники, несоосность, дисбаланс, ослабление) во вращающемся оборудовании. По мере развития механических или электрических неисправностей в двигателях уровни вибрации возрастают.Это увеличение уровней вибрации и шума происходит при разной степени тяжести развивающейся неисправности.

Акселерометры

используются для измерения вибрации при работающем оборудовании, а данные загружаются в программное обеспечение для анализа. Во время работы тестируемой машины акселерометр определяет ее вибрацию в трех плоскостях движения (вертикальной, горизонтальной и осевой).


Ультразвуковой тестер

Дуга, трекинг и корона – все это вызывает ионизацию, которая нарушает молекулы окружающего воздуха.Ультразвуковой тестер обнаруживает высокочастотные звуки, производимые этими излучениями, и переводит их в слышимые человеком диапазоны.

Звук каждого излучения слышен в наушниках, а интенсивность сигнала отображается на дисплее. Эти звуки могут быть записаны и проанализированы с помощью программного обеспечения ультразвукового спектрального анализа для более точной диагностики.

Обычно электрическое оборудование должно быть бесшумным, хотя некоторое оборудование, такое как трансформаторы, может издавать постоянный гул или некоторые устойчивые механические шумы.Их не следует путать с беспорядочным, шипящим жаром, неравномерным и хлопающим звуком электрического разряда.

Ультразвуковые извещатели также используются для обнаружения утечек воздуха в баках трансформаторов и автоматических выключателях с элегазовой изоляцией.


Банк нагрузки

Блоки нагрузки

доступны для различных применений и обычно имеют размер в зависимости от номинальной мощности в кВт. Фотография: ASCO Avtron

Блоки нагрузки

используются для ввода в эксплуатацию, обслуживания и проверки источников электроэнергии, таких как дизельные генераторы и источники бесперебойного питания (ИБП).Блок нагрузки прикладывает электрическую нагрузку к тестируемому устройству и рассеивает полученную электрическую энергию через резистивные элементы в виде тепла. Резистивные элементы охлаждаются моторизованными вентиляторами внутри конструкции блока нагрузки.

При необходимости можно соединить несколько блоков нагрузки. Некоторые банки нагрузки являются чисто резистивными, в то время как другие могут быть чисто индуктивными, чисто емкостными или любой их комбинацией. Банки нагрузки – лучший способ воспроизвести, доказать и проверить реальные потребности критически важных систем электроснабжения.


Тестер сопротивления батареи

Оборудование для испытания импеданса батарей

в основном используется на подстанциях и в ИБП для определения состояния свинцово-кислотных ячеек путем измерения важных параметров батареи, таких как импеданс ячейки, напряжение ячейки, сопротивление межэлементного соединения и ток пульсации. Все три теста могут быть выполнены на одном устройстве.

Тестер импеданса батареи работает, подавая сигнал переменного тока на отдельную ячейку и измеряя падение переменного напряжения, вызванное этим переменным током, а также ток в отдельной ячейке.Затем он рассчитает импеданс. Используется стандартный набор отведений с двумя точками Кельвина. Одна точка предназначена для подачи тока, а другая – для измерения потенциала.


Ареометр аккумуляторный

Удельный вес измеряется ареометром. Цифровые ареометры, подобные изображенному выше, – самый простой способ получить показания. Фото: BAE Canada.

Аккумуляторный ареометр используется для проверки состояния заряда аккумуляторного элемента путем измерения плотности электролита, что достигается путем измерения удельного веса электролита.Чем больше концентрация серной кислоты, тем плотнее становится электролит. Чем выше плотность, тем выше уровень заряда.

По мере старения аккумулятора удельный вес электролита будет уменьшаться при полной зарядке. Удельный вес измеряется путем втягивания пробы жидкости в испытательное оборудование и получения показаний. Показания могут быть представлены поплавком на числовой шкале или цифровым дисплеем.

Связано: 3 простых, но эффективных теста для аккумуляторных систем


на комментарий.

Определения NFPA 70E – Arc FlashTraining – Обучение NFPA 70E

Определения NFPA 70E необходимо знать, поскольку мы используем эти термины для объяснения оценки риска вспышки дуги и NFPA 70E. Эти определения NFPA 70E взяты из справочника NFPA 70E, издание 2018 г. Пожалуйста, свяжитесь с ESS, если у вас есть какие-либо вопросы об определениях NFPA 70E.

Опасность дугового разряда

Опасное состояние, связанное с возможным высвобождением энергии, вызванным электрической дугой.Информационное примечание № 1: Опасность вспышки дуги может возникнуть, когда электрические проводники или части схемы под напряжением открыты или когда они находятся внутри оборудования в защищенном или закрытом состоянии, при условии, что человек взаимодействует с оборудованием таким образом, который может вызвать электрическая дуга. В нормальных условиях эксплуатации замкнутое оборудование под напряжением, которое было правильно установлено и обслуживается, вряд ли будет представлять опасность вспышки дуги.

Информационная записка № 2: См. Таблицу 130.7 (C) (15) (a) и в Таблице 130.7 (C) (15) (A) (a) приведены примеры действий, которые могут создать опасность дугового разряда.

Опасность вспышки дуги существует, если человек подвергается или может подвергнуться значительной термической опасности. Если тепловая опасность имеет серьезность, при которой человек может получить 1,2 калории на квадратный сантиметр

(кал / см2) или более падающей (тепловой) энергии, опасность считается значительной. Необходимо использовать средства индивидуальной защиты с рейтингом, превышающим тепловую опасность.Использование средств индивидуальной защиты для облучения с падающей энергией менее 1,2 кал / см2, безусловно, разрешено и может быть сочтено целесообразным работодателем и работником.

В определенных условиях дуговое замыкание внутри оборудования может вызвать волну давления и нарушить целостность корпуса. Технический комитет предполагает, что термин «взаимодействие с оборудованием» может означать открытие или закрытие средства отключения, нажатие кнопки сброса или запирание дверцы корпуса.Однако, если оборудование установлено в соответствии с требованиями NEC, надлежащим образом обслуживается и работает нормально, вероятность того, что одно из этих действий приведет к возникновению дугового замыкания, мала.

Оценка риска вспышки дуги

Исследование, посвященное потенциальному воздействию на работника энергии вспышки дуги, проводимое с целью предотвращения травм и определения безопасных методов работы, границ вспышки дуги и соответствующих уровней личной защиты оборудование (СИЗ).

Анализ опасности вспышки дуги определяет границу защиты от вспышки и количество падающей энергии, которая может воздействовать на сотрудника при выполнении рабочей задачи, и проводится в дополнение к анализу опасности поражения электрическим током. Анализ может принимать одну из нескольких различных форм.

Анализ опасности вспышки дуги необходим независимо от наличия этикеток или маркировки на поверхности электрического оборудования. Ссылка на предупреждающую этикетку может быть одним из этапов анализа; однако анализ также должен учитывать риск.По завершении анализа у сотрудника будет достаточно информации для выбора необходимых средств индивидуальной защиты (СИЗ) от дугового разряда и методов работы, необходимых для сведения к минимуму любого теплового воздействия. Часть анализа включает определение границы вспышки дуги и падающей энергии.

Костюм для защиты от дуги

Полная система одежды и оборудования, рассчитанная на дугу, которая покрывает все тело, за исключением рук и ног.

Рейтинг дуги

Значение, приписываемое материалам, которые описывают их характеристики при воздействии электрического дугового разряда.Номинальная мощность дуги выражается в кал / см2 и выводится из определенного значения тепловых характеристик дуги (ATPV) или порога энергии размыкания (EBT) (если система материалов показывает реакцию на размыкание и размыкание ниже значения ATPV). Рейтинг дуги указывается как ATPV или EBT, в зависимости от того, какое из них меньше.

Балаклава (капюшон для носков)

Дуговой капюшон, защищающий шею и голову, за исключением лицевой области глаз и носа.

Граница, вспышка дуги

Когда существует опасность вспышки дуги, предел приближения на расстоянии от предполагаемого источника дуги, в пределах которого человек может получить ожог второй степени, если произойдет вспышка электрической дуги.

Граница, ограниченный подход

Предел приближения на расстоянии от открытого электрического проводника или части схемы, в пределах которой существует опасность поражения электрическим током. Ограниченная граница подхода не связана с вспышкой дуги или падающей энергией. Ограниченная граница подхода – это граница защиты от ударов, предназначенная для определения предела приближения для неквалифицированных сотрудников и устранения риска контакта с незащищенным электрическим проводником под напряжением. Этот термин используется для обозначения минимального расстояния, которое считается безопасным.Когда сотрудник находится ближе, чем это минимальное расстояние, необходимо соблюдать особые меры защиты. Любое лицо, работающее в пределах границы ограниченного подхода к открытым проводам цепи под напряжением или частям цепи, может сделать это только в том случае, если разрешение на работу под напряжением было заполнено и санкционировано, за исключением случаев, указанных в 130.3 (B) (3). Если неквалифицированный сотрудник должен работать в рамках ограниченного подхода, он должен находиться под прямым и постоянным наблюдением квалифицированного специалиста.

Граница, ограниченный подход

Предел приближения на расстоянии от открытого проводника под напряжением или части схемы, в пределах которой существует повышенная вероятность поражения электрическим током из-за дугового разряда в сочетании с непреднамеренным движением для персонал, работающий в непосредственной близости от электрического проводника или части цепи, находящейся под напряжением.

Граница ограниченного подхода – это граница защиты от ударов, которая не связана с вспышкой дуги или падающей энергией. Это предел подхода для квалифицированных сотрудников. Квалифицированные сотрудники должны обладать знаниями и способностями избегать неожиданного контакта с незащищенным проводником под напряжением. Если квалифицированному сотруднику необходимо пересечь границу ограниченного подхода, он должен быть защищен от неожиданного контакта с проводниками, находящимися под напряжением и открытыми. Разрешение на электромонтажные работы необходимо заполнить и разрешить до того, как сотрудники будут работать в пределах ограниченных, ограниченных и запрещенных границ подхода, за исключением случаев, разрешенных законом 130.3 (В) (3).

Автоматический выключатель

Устройство, предназначенное для размыкания и замыкания цепи неавтоматическими средствами и автоматического размыкания цепи при заданном перегрузке по току без ущерба для себя при правильном применении в пределах своего номинала. [70, 100]

Обесточено

Без каких-либо электрических соединений с источником разности потенциалов и без электрического заряда; не имея потенциала, отличного от потенциала земли.

Средства отключения

Устройство или группа устройств, или другие средства, с помощью которых проводники цепи могут быть отключены от источника питания. [70, 100]

Средства отключения могут представлять собой один или несколько переключателей, автоматических выключателей или других устройств с номинальными характеристиками, которые могут использоваться для отключения электрических проводников от их источника энергии. Для отключения рабочей нагрузки следует использовать только средства отключения, рассчитанные на номинальную нагрузку.

Разъединяющий (или изолирующий) выключатель (разъединитель, изолятор)

Механическое переключающее устройство, используемое для отключения цепи или оборудования от источника питания. Эти устройства предназначены для работы после отключения и отключения тока нагрузки. На эти устройства можно установить замки и бирки.

Опасность поражения электрическим током

Опасное состояние, при котором контакт или отказ оборудования могут привести к поражению электрическим током, вспышке дуги, термическому ожогу или взрыву.

Пожар, поражение электрическим током и поражение электрическим током уже много лет считаются опасностями, связанными с поражением электрическим током. Начиная с издания NFPA 70E 1995 г., вспышка дуги считается опасным электрическим током. Опасность вспышки дуги в настоящее время определяется с учетом только тепловых аспектов дугового замыкания. К другим опасностям относятся летящие части и детали, а также волна давления (взрыв), возникающая при дуговом замыкании. Другие электрические опасности также могут быть связаны с дуговым замыканием.

Электрооборудование, находящееся под напряжением менее 50 В, обычно не считается источником возникновения дуги.Однако сотрудники должны осознавать, что последствия дугового замыкания связаны с доступной падающей энергией. В некоторых случаях опасность дугового замыкания может быть значительной. Если существует опасность поражения электрическим током или опасности взрыва из-за электрической дуги, могут потребоваться электробезопасные условия работы и СИЗ в соответствии с требованиями статьи 130.

Электробезопасность

Признание опасностей, связанных с использованием электроэнергии и принятие мер предосторожности, чтобы опасности не привели к травмам или смерти.

Электробезопасность – это условие, которого можно достичь, выполнив следующие действия:

· Выявление всех электрических опасностей

· Создание комплексного плана по снижению воздействия опасностей

· Обеспечение схем защиты, включая обучение как квалифицированных, так и неквалифицированный персонал

Условия электробезопасности работы

Состояние, в котором электрический проводник или часть цепи отсоединены от частей, находящихся под напряжением, заблокированы / промаркированы в соответствии с установленными стандартами, испытаны на отсутствие напряжения и заземлены при необходимости.

Создание электрически безопасных условий работы – это единственная рабочая практика, которая гарантирует, что электротравмы не произойдет. Однако рабочие должны осознавать, что использование средств отключения и проверка отсутствия напряжения сами по себе могут быть опасными рабочими задачами.

До тех пор, пока не будут соблюдены электробезопасные условия работы, существует риск травмы из-за электрической энергии.

Открытые (применительно к электрическим проводникам или частям цепи под напряжением). Возможность непреднамеренного прикосновения или приближения человека ближе, чем на безопасном расстоянии.Он применяется к электрическим проводам или частям схемы, которые не защищены, не изолированы или не изолированы должным образом.

Предохранитель

Устройство защиты от перегрузки по току с плавкой частью размыкания цепи, которая нагревается и разъединяется при прохождении через нее сверхтока.

Короткое замыкание на землю

Непреднамеренное электрически проводящее соединение между незаземленным проводником

электрической цепи и обычно нетоковедущими проводниками, металлическими корпусами, металлическими каналами, металлическим оборудованием или землей.

Охраняемый

Крытый, экранированный, огороженный, закрытый или иным образом защищенный подходящими крышками, кожухами, барьерами, рельсами, экранами, матами или платформами, чтобы исключить вероятность приближения или контакта людей или предметов в точку опасности. [70, 100] Когда оголенный проводник охраняется, человек, приближающийся к оголенному проводнику, вряд ли прикоснется к проводнику. Человек должен подвергаться воздействию разности потенциалов 50 вольт или более, чтобы существовала опасность поражения электрическим током.

Человек может подвергнуться опасностям, связанным с дуговым замыканием, даже если проводник защищен. Защищенный проводник защищает человека от поражения электрическим током, но не от дугового разряда.

Энергия падающего излучения

Количество тепловой энергии, приложенной к поверхности на определенном расстоянии от источника, генерируемой во время возникновения электрической дуги. Энергия падающего излучения обычно выражается в калориях на квадратный сантиметр (кал / см2).

Падающая энергия может быть выражена несколькими различными терминами, например, калориями на квадратный сантиметр, джоулями на квадратный сантиметр или калориями на квадратный дюйм. Однако падающая энергия должна быть выражена в тех же терминах, что и СИЗ по термическому расчету. Стандарты ASTM требуют, чтобы СИЗ оценивались в калориях на квадратный сантиметр, что позволяет сотруднику выбрать адекватные СИЗ. Физические характеристики материалов различаются, в результате чего материалы по-разному реагируют на воздействие повышенных температур.Некоторые искусственные материалы плавятся перед возгоранием под воздействием тепловой энергии, образующейся при дуговом замыкании. Некоторые другие материалы воспламеняются и горят при возникновении дуги. Наиболее серьезные травмы возникают, когда одежда тает на коже сотрудника или когда одежда сотрудника воспламеняется и горит. Многие материалы плавятся или воспламеняются при нагревании до нескольких сотен градусов по Фаренгейту. Падение энергии приводит к повышению температуры одежды или кожи сотрудника при возникновении дугового разряда. Прогнозирование количества доступной падающей энергии имеет решающее значение для предотвращения травм от плавления или ожога одежды или от прямого воздействия падающей энергии на кожу.

Анализ энергии вспышки

Компонент анализа опасности вспышки дуги, используемый для прогнозирования энергии вспышки при оценке риска вспышки дуги для заданного набора условий.

Анализ падающей энергии – важная часть выполнения анализа опасности вспышки дуги для конкретной задачи и конкретного элемента электрооборудования. Расчетный или вычисленный анализ падающей энергии обеспечивает анализ падающей энергии для конкретной установки, которой будет подвергаться сотрудник, если произойдет вспышка дуги.Эта сфокусированная информация позволяет выбрать СИЗ в зависимости от условий, связанных с задачей, выполняемой на конкретном электрическом оборудовании.

Центр управления двигателем

Узел из одной или нескольких закрытых секций, имеющих общую шину питания и в основном содержащий блоки управления двигателем. [70, 100]. Центр управления двигателем обычно содержит стартеры, разъединители, силовые панели, твердотельные приводы и аналогичные компоненты.

Панель-панель

Отдельная панель или группа панельных блоков, предназначенная для сборки в виде единой панели, включая шины и автоматические устройства защиты от перегрузки по току, и оснащенная переключателями для управления освещением или без них. , тепловые или силовые цепи; предназначены для размещения в шкафу или ящике с вырезом в стене, перегородке или другой опоре или напротив нее; и доступен только спереди.[70, 100]

Квалифицированное лицо

Лицо, продемонстрировавшее навыки и знания, связанные со строительством и эксплуатацией электрического оборудования и установок, и прошедшее обучение технике безопасности для выявления и предотвращения связанных с этим опасностей.

Чтобы человек считался квалифицированным, он или она должны понимать опасность поражения электрическим током, связанную с рассматриваемой рабочей задачей. Прежде чем выбрать необходимое защитное оборудование

(СИЗ), он или она также должны понимать правильное применение и ограничения СИЗ и таких инструментов, как тестеры напряжения.Квалифицированный специалист должен уметь распознавать все опасности поражения электрическим током, которые могут быть связаны с рассматриваемой рабочей задачей. Сотрудник может быть квалифицирован для выполнения одной рабочей задачи и не квалифицирован для выполнения другой задачи. Квалифицированный сотрудник должен понимать конструкцию и работу оборудования или схемы, связанной с предполагаемой рабочей задачей.

Последняя редакция определения OSHA для квалифицированного специалиста (1910.399 8/07) включает фразу «продемонстрировал навыки.«Чтобы выполнить это требование, человек должен фактически продемонстрировать, что он / она может выполнить задачу. Генеральная репетиция с использованием соответствующих средств индивидуальной защиты для выполнения задачи гарантирует, что сотрудник сможет выполнить задачу с ограничениями освещения капюшона костюма-вспышки и ограничениями маневренности перчаток, рассчитанных на напряжение, с кожаными протекторами.

Квалифицированный специалист должен понимать, как выбрать подходящее испытательное оборудование и применить это оборудование к рабочей задаче. Он или она должны быть обучены понимать и применять детали программы и процедур по электробезопасности, предоставленные работодателем.

Квалифицированный специалист должен уметь проводить анализ опасностей / рисков и надлежащим образом реагировать на все опасности, связанные с рабочей задачей. Хотя программы лицензирования, администрируемые правительством штата и местными властями, обычно имеют требования к обучению, которым кандидат должен соответствовать до экзамена, а затем периодически после получения лицензии, лицензия сама по себе не дает человеку квалификации для выполнения всех задач, с которыми он может столкнуться. .

Электромонтажные работы требуют непрерывного образования и демонстрации необходимых навыков для поддержания необходимого уровня навыков для безопасной работы.Быть квалифицированным специалистом частично означает признание того, что электрические работы под напряжением разрешены только при условиях, указанных в 130.2 (A).

Опасность поражения электрическим током

Опасное состояние, связанное с возможным высвобождением энергии при контакте или приближении к находящимся под напряжением электрическим проводникам или частям цепи.

Допуск электрического тока через тело варьируется от человека к человеку, а также зависит от пути тока через тело.Хотя это технически не обосновано, допуск, по-видимому, связан с плотностью тока. Однако в существующей документации указано, что любой человек может получить электрошок, если сила тока превышает 0,020 ампер. Любой контакт с источником электрической энергии, который может вызвать такой уровень тока, представляет опасность поражения электрическим током. Обычно, когда напряжение составляет 50 вольт или больше, существует опасность поражения электрическим током.

Номинальный ток короткого замыкания

Предполагаемый симметричный ток короткого замыкания при номинальном напряжении, к которому устройство или система могут быть подключены без повреждений, превышающих определенные критерии приемки.[70, 100]

Номинальные значения тока короткого замыкания маркируются на таком оборудовании, как щитовые панели, распределительные щиты, шинопроводы, контакторы и пускатели. Перечисленные продукты подвергаются тщательному тестированию в рамках их оценки, которая включает тесты в условиях сбоя. Следовательно, перечисленные продукты, используемые в их рейтингах, считаются соответствующими требованиям 110.10 NEC. Основная цель защиты от перегрузки по току – разомкнуть цепь до того, как проводники или их изоляция будут повреждены при возникновении состояния перегрузки по току.Состояние перегрузки по току может быть результатом перегрузки, замыкания на землю или короткого замыкания. Следует выбирать устройства защиты от перегрузки по току (такие как предохранители и автоматические выключатели), чтобы гарантировать, что номинальный ток короткого замыкания компонентов системы не будет превышен в случае короткого замыкания или сильного замыкания на землю. Провода, шинные конструкции, коммутационные, защитные и отключающие устройства, а также распределительное оборудование имеют ограниченные характеристики короткого замыкания и будут повреждены или разрушены, если эти номинальные значения короткого замыкания будут превышены.Простое обеспечение защитных устройств от перегрузки по току с достаточными отключающими характеристиками не обеспечит адекватную защиту от короткого замыкания для компонентов системы. Когда доступный ток короткого замыкания превышает номинальный ток короткого замыкания электрического компонента, устройство защиты от перегрузки по току должно ограничивать пропускаемую энергию в пределах номинала этого электрического компонента. Коммунальные предприятия обычно определяют и предоставляют информацию о доступных уровнях тока короткого замыкания на обслуживающем оборудовании.Литературу о том, как рассчитать токи короткого замыкания в каждой точке любого распределения, обычно можно получить, связавшись с производителями устройств защиты от сверхтоков или обратившись к IEEE 141-1993 (R1999), Рекомендуемая практика IEEE для распределения электроэнергии в промышленности Растения (Красная книга). Адекватная защита от короткого замыкания может быть обеспечена с помощью предохранителей, автоматических выключателей в литом корпусе и силовых выключателей низкого напряжения, в зависимости от конкретной схемы и требований установки.

Однолинейная диаграмма

Схема, которая показывает с помощью отдельных линий и графических символов ход электрической цепи или системы цепей, а также составляющие устройства или части, используемые в цепи или системе.

Выключатель изолирующий

Выключатель, предназначенный для отключения электрической цепи от источника питания. У него нет отключающей способности, и он предназначен для работы только после размыкания цепи каким-либо другим способом.[70, 100]

Коммутатор

Большая отдельная панель, рама или сборка панелей, на которых монтируются на лицевой, задней или обеих сторонах переключатели, устройства защиты от сверхтока и другие защитные устройства, шины, и обычно инструменты. Эти сборки обычно доступны как сзади, так и спереди, и не предназначены для установки в шкафах. [70, 100]

Распределительное устройство, устойчивое к дуге

Оборудование, спроектированное так, чтобы противостоять эффектам внутреннего дугового замыкания и которое направляет высвобождаемую изнутри энергию в сторону от работника.

Дугоустойчивый коммутационный аппарат обеспечивает защиту от внутреннего дугового замыкания, когда оборудование замкнуто и работает нормально. Если двери и крышки (включая крепежные детали) закрыты не полностью, рабочие подвергаются рискам, связанным с дуговым замыканием, так же, как если бы не существовало номинальной устойчивости к дуге. Такая защита не может быть обеспечена, если распределительное устройство специально не определено как дугостойкое.

Неквалифицированное лицо

Лицо, не являющееся квалифицированным лицом.

В рабочем состоянии (электрический провод под напряжением s или части цепи).

Преднамеренный контакт с электрическими проводниками или частями цепи под напряжением руками, ногами или другими частями тела, инструментами, датчиками или испытательным оборудованием, независимо от средств индивидуальной защиты, которые носит человек. Существует две категории «работы»: Диагностика (тестирование) – это снятие показаний или измерений электрического оборудования с помощью утвержденного испытательного оборудования, которое не требует внесения каких-либо физических изменений в оборудование; Ремонт – это любое физическое изменение электрического оборудования (например, выполнение или затяжка соединений, снятие или замена компонентов и т. д.).).

Любая задача, требующая от человека пересечь границу запрещенного подхода и намеренно контактировать с электрическим проводником или частью цепи под напряжением, считается работающей с проводником или частью цепи и подчиняется всем связанным требованиям, включая выбор соответствующего уровня СИЗ. . Измерение напряжения требует нарушения границы запрещенного подхода, что предполагает, что измерение напряжения подвергает работника опасности поражения электрическим током.

Определение термина “работа” устанавливает два совершенно разных типа задач, которые включены в это определение: диагностическое тестирование и ремонт.Определяя эти два типа задач, которые считаются выполняемыми, определение предполагает, что различные процедурные подходы могут быть в порядке в зависимости от сложности задачи и подверженности сотрудника опасности поражения электрическим током.

Конец определений NFPA 70E

Электроэнергетика и энергия | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте мощность, рассеиваемую резистором, и мощность, подаваемую источником питания.
  • Рассчитайте стоимость электроэнергии при различных обстоятельствах.

Мощность в электрических цепях

Мощность ассоциируется у многих с электричеством. Зная, что мощность – это скорость использования или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередач. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт.(См. Рис. 1 (а).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Рис. 1. (a) Какая из этих лампочек, лампа мощностью 25 Вт (вверху слева) или лампа мощностью 60 Вт (вверху справа), имеет большее сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания мощностью 25 Вт круче? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Дикбаух, Wikimedia Commons; Грег Вестфолл, Flickr) (б) Этот компактный люминесцентный светильник (КЛЛ) излучает такую ​​же интенсивность света, как и лампа мощностью 60 Вт, но при входной мощности от 1/4 до 1/10.(кредит: dbgg1979, Flickr)

Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q – это перемещенный заряд, а V, – напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность – это скорость перемещения энергии, поэтому электрическая мощность равна

.

[латекс] P = \ frac {PE} {t} = \ frac {qV} {t} \\ [/ latex].

Учитывая, что ток равен I = q / t (обратите внимание, что Δ t = t здесь), выражение для мощности становится

P = IV

Электрическая мощность ( P ) – это просто произведение тока на напряжение.Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность выражается в джоулях в секунду или ваттах. Таким образом, 1 A ⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства. Эти розетки могут быть рассчитаны на 20 А, чтобы схема могла выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт. В некоторых приложениях электрическая мощность может выражаться в вольт-амперах или даже киловольт-амперы (1 кА V = 1 кВт).Чтобы увидеть отношение мощности к сопротивлению, мы объединяем закон Ома с P = IV . Подстановка I = V / R дает P = ( V / R ) V = V 2 / R . {2} R \\ [/ latex].

Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.) Из трех различных выражений для электрической мощности можно получить различное понимание. Например, P = V 2 / R означает, что чем ниже сопротивление, подключенное к данному источнику напряжения, тем больше подаваемая мощность.Кроме того, поскольку напряжение возведено в квадрат P = В 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет примерно 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная энергия

(a) Рассмотрим примеры, приведенные в Законе Ома: сопротивление и простые цепи и сопротивление и удельное сопротивление.Затем найдите мощность, рассеиваемую фарой автомобиля в этих примерах, как в горячую, так и в холодную погоду. б) Какой ток он потребляет в холодном состоянии?

Стратегия для (а)

Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать P = V 2 / R , чтобы найти мощность.

Решение для (а)

Вводя известные значения тока и напряжения для горячей фары, получаем

P = IV = (2.{2}} {0,350 \ text {} \ Omega} = 411 \ text {W} \\ [/ latex].

Обсуждение для (а)

30 Вт, рассеиваемые горячей фарой, являются типичными. Но 411 Вт в холодную погоду на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.

Стратегия и решение для (b)

Ток при холодной лампочке можно найти несколькими способами. Переставляем одно из уравнений мощности, P = I 2 R , и вводим известные значения, получая

[латекс] I = \ sqrt {\ frac {P} {R}} = \ sqrt {\ frac {411 \ text {W}} {{0.350} \ text {} \ Omega}} = 34,3 \ text {A} \\ [/ latex].

Обсуждение для (б)

Холодный ток значительно выше, чем установившееся значение 2,50 А, но ток будет быстро снижаться до этого значения по мере увеличения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) рассчитаны на кратковременную выдержку очень высоких токов при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей с замедленным срабатыванием.

Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот знакомый факт основан на соотношении энергии и мощности. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что

E = Pt

– это энергия, используемая устройством, использующим мощность P в течение интервала времени t . Например, чем больше горело лампочек, тем больше использовалось P ; чем дольше они работают, тем больше т .Единицей измерения энергии в счетах за электричество является киловатт-час (кВт ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если у вас есть некоторое представление об их потребляемой мощности в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашей электросети. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, можно преобразовать в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3.6 × 10 6 Дж.

Потребляемая электрическая энергия ( E ) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения – один из самых быстрых способов снизить потребление электроэнергии в доме или на работе. Около 20% энергии в доме расходуется на освещение, в то время как в коммерческих учреждениях эта цифра приближается к 40%.Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания – это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). (См. Рис. 1 (b).) Таким образом, лампу накаливания мощностью 60 Вт можно заменить на КЛЛ мощностью 15 Вт, которая имеет такую ​​же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они подключены к стандартному привинчиваемому основанию, которое подходит для стандартных розеток лампы накаливания. (В последние годы были решены исходные проблемы с цветом, мерцанием, формой и высокими начальными вложениями в КЛЛ.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше. В следующем примере рассматривается важность инвестиций в такие лампы. Новые белые светодиодные лампы (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза больше, чем у КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.

Установление соединений: энергия, мощность и время

Отношение E = Pt может оказаться полезным во многих различных контекстах.Энергия, которую ваше тело использует во время упражнений, зависит, например, от уровня мощности и продолжительности вашей активности. Степень нагрева от источника питания зависит от уровня мощности и времени ее применения. Даже доза облучения рентгеновского изображения зависит от мощности и времени воздействия.

Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)

Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования лампы накаливания мощностью 60 Вт в течение 1000 часов (срок службы этой лампы), если стоимость лампы составляет 25 центов? (б) Если мы заменим эту лампочку компактной люминесцентной лампой, которая обеспечивает такой же световой поток, но составляет четверть мощности и стоит 1 доллар.50, но длится в 10 раз дольше (10 000 часов), какова будет общая стоимость?

Стратегия

Чтобы найти эксплуатационные расходы, мы сначала находим используемую энергию в киловатт-часах, а затем умножаем ее на стоимость киловатт-часа.

Решение для (а)

Энергия, используемая в киловатт-часах, определяется путем ввода мощности и времени в выражение для энергии:

E = Pt = (60 Вт) (1000 ч) = 60,000 Вт ч

В киловатт-часах это

E = 60.0 кВт ⋅ ч.

Сейчас стоимость электроэнергии

Стоимость

= (60,0 кВт ч) (0,12 долл. США / кВт час) = 7,20 долл. США.

Общая стоимость составит 7,20 доллара за 1000 часов (около полугода при 5 часах в день).

Решение для (b)

Поскольку CFL использует только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20 доллара США / 4 = 1,80 доллара США. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты составят 1/10 стоимости лампы за этот период использования, или 0.1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость 1000 часов составит 1,95 доллара США.

Обсуждение

Следовательно, использование КЛЛ намного дешевле, даже если начальные вложения выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывается.

Выполнение подключений: эксперимент на вынос – инвентаризация использования электроэнергии

1) Составьте список номинальной мощности для ряда приборов в вашем доме или комнате.Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем цифровые часы. Оцените энергию, потребляемую этими приборами в среднем за день (оценивая время их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение 120 В, то используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что используемые длинные люминесцентные лампы рассчитаны на 32 Вт.) Предположим, что здание было закрыто все выходные, и что эти огни были оставлены включенными с 6 часов вечера.{2} R \\ [/ латекс].

  • Энергия, используемая устройством с мощностью P за время t , составляет E = Pt .

Концептуальные вопросы

1. Почему лампы накаливания тускнеют в конце своей жизни, особенно незадолго до того, как их нити оборвутся?

Мощность, рассеиваемая на резисторе, равна P = V 2 / R , что означает, что мощность уменьшается при увеличении сопротивления. Тем не менее, эта мощность также определяется соотношением P = I 2 R , что означает, что мощность увеличивается при увеличении сопротивления.Объясните, почему здесь нет противоречия.

Задачи и упражнения

1. Какова мощность разряда молнии 1,00 × 10 2 МВ при токе 2,00 × 10 4 A ?

2. Какая мощность подается на стартер большого грузовика, который потребляет 250 А тока от аккумуляторной батареи 24,0 В?

3. Заряд в 4,00 Кл проходит через солнечные элементы карманного калькулятора за 4,00 часа. Какова выходная мощность, если выходное напряжение вычислителя равно 3.00 В? (См. Рисунок 2.)

Рис. 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих потребностей в энергии. (Источник: Эван-Амос, Wikimedia Commons)

4. Сколько ватт проходит через него фонарик с 6,00 × 10 2 за 0,500 ч использования, если его напряжение составляет 3,00 В?

5. Найдите мощность, рассеиваемую каждым из этих удлинителей: (a) удлинительный шнур с сопротивлением 0,0600 Ом, через который 5.00 А течет; (б) более дешевый шнур с более тонким проводом и сопротивлением 0,300 Ом.

6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .

7. Покажите, что единицы 1V 2 / Ω = 1W, как следует из уравнения P = V 2 / R .

8. Покажите, что единицы 1 A 2 Ω = 1 Вт, как следует из уравнения P = I 2 R .

9. Проверьте эквивалент единиц энергии: 1 кВт ч = 3,60 × 10 6 Дж.

10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к цели для получения рентгеновских лучей. Вычислите мощность электронного луча в этой трубке, если она имеет ток 15,0 мА.

11. Электрический водонагреватель потребляет 5,00 кВт за 2,00 часа в сутки. Какова стоимость его эксплуатации в течение одного года, если электроэнергия стоит 12,0 центов / кВт · ч? См. Рисунок 3.

Рисунок 3. Водонагреватель электрический по запросу. Тепло в воду подается только при необходимости. (кредит: aviddavid, Flickr)

12. Сколько электроэнергии необходимо для тостера с тостером мощностью 1200 Вт (время приготовления = 1 минута)? Сколько это стоит при 9,0 цента / кВт · ч?

13. Какова будет максимальная стоимость КЛЛ, если общая стоимость (капиталовложения плюс эксплуатация) будет одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов / кВтч.Рассчитайте стоимость 1000 часов, как в примере с КЛЛ по рентабельности.

14. Некоторые модели старых автомобилей имеют электрическую систему 6,00 В. а) Каково сопротивление горячему свету у фары мощностью 30,0 Вт в такой машине? б) Какой ток течет через него?

15. Щелочные батареи имеют то преимущество, что они выдают постоянное напряжение почти до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А · ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?

16.Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его выходная мощность? б) Какое сопротивление пути?

17. В среднем телевизор работает 6 часов в день. Оцените годовые затраты на электроэнергию для работы 100 миллионов телевизоров, предполагая, что их потребляемая мощность составляет в среднем 150 Вт, а стоимость электроэнергии составляет в среднем 12,0 центов / кВт · ч.

18. Старая лампочка потребляет всего 50,0 Вт, а не 60,0 Вт из-за истончения ее нити за счет испарения.Во сколько раз уменьшается его диаметр при условии равномерного утонения по длине? Не обращайте внимания на любые эффекты, вызванные перепадами температур.

Медная проволока калибра 19. 00 имеет диаметр 9,266 мм. Вычислите потери мощности в километре такого провода, когда он пропускает 1,00 × 10 2 A.

Холодные испарители пропускают ток через воду, испаряя ее при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует 120 В переменного тока с эффективностью 95,0%.а) Какова скорость испарения в граммах в минуту? (b) Сколько воды нужно налить в испаритель за 8 часов работы в ночное время? (См. Рисунок 4.)

Рис. 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим увеличением температуры.

21. Integrated Concepts (a) Какая энергия рассеивается разрядом молнии с током 20 000 А, напряжением 1,00 × 10 2 МВ и длиной 1.00 мс? (б) Какую массу древесного сока можно было бы поднять с 18ºC до точки кипения, а затем испарить за счет этой энергии, если предположить, что сок имеет те же тепловые характеристики, что и вода?

22. Integrated Concepts Какой ток должен вырабатывать подогреватель бутылочек на 12,0 В, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00 × 10 2 алюминия от 20 ° C до 90º за 5,00 мин?

23. Integrated Concepts Сколько времени требуется хирургическому прижигателю для повышения температуры 1.00 г ткани от 37º до 100, а затем кипятить 0,500 г воды, если она выдает 2,00 мА при 15,0 кВ? Не обращайте внимания на передачу тепла в окружающую среду.

24. Integrated Concepts Гидроэлектрические генераторы (см. Рисунок 5) на плотине Гувера вырабатывают максимальный ток 8,00 × 10 3 А при 250 кВ. а) Какова выходная мощность? (b) Вода, питающая генераторы, входит и покидает систему с низкой скоростью (таким образом, ее кинетическая энергия не изменяется), но теряет 160 м в высоте.Сколько кубических метров в секунду необходимо при КПД 85,0%?

Рисунок 5. Гидроэлектрические генераторы на плотине Гувера. (кредит: Джон Салливан)

25. Integrated Concepts (a) Исходя из 95,0% эффективности преобразования электроэнергии двигателем, какой ток должны обеспечивать аккумуляторные батареи на 12,0 В 750-килограммового электромобиля: отдых до 25,0 м / с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин при постоянной 25.Скорость 0 м / с при приложении силы 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м / с, прилагая силу 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? См. Рисунок 6.

Рис. 6. Электромобиль REVAi заряжается на одной из улиц Лондона. (кредит: Фрэнк Хебберт)

26. Integrated Concepts Пригородный легкорельсовый поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении.а) Какова его мощность в киловаттах? (b) Сколько времени нужно, чтобы достичь скорости 20,0 м / с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 4 кг, предполагая эффективность 95,0% и постоянную мощность? (c) Найдите его среднее ускорение. (г) Обсудите, как ускорение, которое вы обнаружили для легкорельсового поезда, сравнивается с тем, что может быть типичным для автомобиля.

27. Integrated Concepts (a) Линия электропередачи из алюминия имеет сопротивление 0,0580 Ом / км. Какова его масса на километр? б) Какова масса на километр медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева.Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

28. Integrated Concepts (a) Погружной нагреватель, использующий 120 В, может поднять температуру 1,00 × 10 2 -граммовой алюминиевой чашки, содержащей 350 г воды, с 20 ° C до 95 ° C за 2,00 мин. Найдите его сопротивление, предполагая, что оно постоянно в процессе. (b) Более низкое сопротивление сократит время нагрева. Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

29. Integrated Concepts (a) Какова стоимость нагрева гидромассажной ванны, содержащей 1500 кг воды, от 10 ° C до 40 ° C, исходя из эффективности 75,0% с учетом передачи тепла в окружающую среду? Стоимость электроэнергии 9 центов / кВт kWч. (b) Какой ток потреблял электрический нагреватель переменного тока 220 В, если на это потребовалось 4 часа?

30 . Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 2 МВт мощности при 480 В? (b) Какая мощность рассеивается линиями передачи, если они имеют коэффициент 1.00 – сопротивление Ом? (c) Что неразумного в этом результате? (d) Какие предположения необоснованны или какие посылки несовместимы?

31. Необоснованные результаты (a) Какой ток необходим для передачи мощности 1,00 × 10 2 МВт при 10,0 кВ? (b) Найдите сопротивление 1,00 км провода, которое вызовет потерю мощности 0,0100%. (c) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? (г) Что необоснованного в этих результатах? (e) Какие предположения необоснованны или какие посылки несовместимы?

32.Создай свою задачу Рассмотрим электрический погружной нагреватель, используемый для нагрева чашки воды для приготовления чая. Постройте задачу, в которой вы рассчитываете необходимое сопротивление нагревателя, чтобы он увеличивал температуру воды и чашки за разумное время. Также рассчитайте стоимость электроэнергии, используемой в вашем технологическом процессе. Среди факторов, которые необходимо учитывать, – это используемое напряжение, задействованные массы и теплоемкость, тепловые потери и время, в течение которого происходит нагрев.Ваш инструктор может пожелать, чтобы вы рассмотрели тепловой предохранительный выключатель (возможно, биметаллический), который остановит процесс до того, как в погружном блоке будут достигнуты опасные температуры.

Глоссарий

электрическая мощность:
– скорость, с которой электрическая энергия подается источником или рассеивается устройством; это произведение тока на напряжение

Избранные решения проблем и упражнения

1. 2,00 × 10 12 Вт

5.{6} \ text {J} \\ [/ latex]

11. 438 $ / год

13. $ 6.25

15. 1.58 ч

17. 3,94 миллиарда долларов в год

19. 25,5 Вт

21. (а) 2,00 × 10 9 Дж (б) 769 кг

23. 45.0 с

25. (а) 343 A (б) 2,17 × 10 3 A (в) 1,10 × 10 3 A

27. (а) 1,23 × 10 3 кг (б) 2,64 × 10 3 кг

29. (a) 2,08 × 10 5 A
(b) 4,33 × 10 4 МВт
(c) Линии передачи рассеивают больше мощности, чем они должны передавать.
(d) Напряжение 480 В неоправданно низкое для напряжения передачи. В линиях передачи на большие расстояния поддерживается гораздо более высокое напряжение (часто сотни киловольт), чтобы уменьшить потери мощности.

Atlantic Training Blog 15 Меры предосторожности при работе с электричеством

Впервые опубликовано здесь

При работе с электричеством крайне важно соблюдать меры безопасности. Безопасность не должна ставиться под угрозу, и в первую очередь необходимо соблюдать некоторые основные правила.Основные инструкции по безопасному обращению с электричеством, изложенные ниже, помогут вам при работе с электричеством.

1. Всегда избегайте воды при работе с электричеством. Никогда не касайтесь и не пытайтесь ремонтировать какое-либо электрическое оборудование или цепи мокрыми руками. Увеличивает проводимость электрического тока.

2. Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.

3. Если вы работаете с какой-либо розеткой в ​​своем доме, всегда отключайте сеть.Также неплохо повесить табличку на сервисной панели, чтобы никто не включил случайно главный выключатель.

4. Всегда используйте изолированные инструменты во время работы.

5. Опасности поражения электрическим током включают открытые части под напряжением и неохраняемое электрическое оборудование, которое может неожиданно оказаться под напряжением. На таком оборудовании всегда есть предупреждающие знаки вроде «Риск поражения электрическим током». Всегда обращайте внимание на такие знаки и соблюдайте правила техники безопасности, установленные электрическими правилами страны, в которой вы находитесь.

6. Всегда используйте соответствующие изолированные резиновые перчатки и защитные очки при работе с любой ответвленной цепью или любой другой электрической цепью.

7. Никогда не пытайтесь ремонтировать оборудование, находящееся под напряжением. Всегда проверяйте, чтобы он был обесточен, с помощью тестера. Когда электрический тестер касается провода под напряжением или горячего провода, лампочка внутри тестера загорается, показывая, что электрический ток течет по соответствующему проводу. Перед тем, как продолжить работу, проверьте все провода, внешнее металлическое покрытие сервисной панели и любые другие свисающие провода с помощью электрического тестера.

8. Никогда не используйте алюминиевую или стальную лестницу, если вы работаете с какой-либо высотой в вашем доме. Электрический скачок заземлит вас, и весь электрический ток пройдет через ваше тело. Вместо этого используйте бамбуковую, деревянную или стеклопластиковую лестницу.

9. Знайте телефонный код своей страны.

10. Всегда проверяйте все свои GFCI один раз в месяц. GFCI (прерыватель цепи замыкания на землю) – это устройство защитного отключения (RCD). Они стали очень распространены в современных домах, особенно во влажных помещениях, таких как ванная и кухня, поскольку помогают избежать опасности поражения электрическим током.Он предназначен для достаточно быстрого отключения, чтобы избежать травм из-за перегрузки по току или короткого замыкания.

Читать статью полностью на SafetyRisk.net

Для получения дополнительных материалов по электробезопасности посетите наши PowerPoints и инфографику, посвященную этой теме.

Советы по электробезопасности для защиты вашего дома

3. Замените или отремонтируйте поврежденные электрические шнуры, чтобы обеспечить безопасность вашего дома.

Поврежденные шнуры питания представляют серьезную угрозу электробезопасности в жилых помещениях и могут стать причиной пожара и поражения электрическим током.Все шнуры питания и удлинители следует регулярно проверять на предмет износа и трещин, а затем при необходимости отремонтировать или заменить. Шнуры питания не должны быть пристегнуты скобами или прокладываться под ковриками и мебелью. Шнуры под ковриками создают опасность споткнуться и могут перегреться, а мебель может разрушить изоляцию шнура и повредить провода.

Регулярное использование удлинителей может означать, что у вас недостаточно розеток для удовлетворения ваших потребностей. Поручите квалифицированному электрику, разбирающемуся в правилах электробезопасности, установить дополнительные розетки в помещениях, где вы часто используете удлинители.При покупке шнура питания учитывайте электрическую нагрузку, которую он будет нести. Шнур с нагрузкой 16 AWG может выдерживать до 1375 Вт. Для более тяжелых нагрузок используйте шнур 14 или 12 AWG.

Совет для профессионалов: AWG означает «американский калибр проволоки». Чем меньше цифра, тем толще шнур!

4. Храните использованные и неиспользованные шнуры в порядке и надежно защищайте их от повреждений.

Правила электробезопасности применяются не только к шнурам питания, когда они используются – шнуры также необходимо хранить в безопасных условиях, чтобы предотвратить повреждение.Храните шнуры вдали от детей и домашних животных (которые могут грызть шнуры или играть с ними). Старайтесь не наматывать шнур слишком плотно на предметы; это может растянуть шнур или вызвать перегрев. Никогда не кладите шнур на горячую поверхность, чтобы не повредить изоляцию шнура и провода.

5. Отключите все неиспользуемые приборы, чтобы снизить потенциальные риски.

Один из простейших советов по электробезопасности также легко забыть: когда прибор не используется, отключайте его от сети.Это не только экономит электроэнергию, уменьшая фантомное потребление энергии (количество энергии, потребляемой устройством, даже когда оно не используется активно), но и отключение неиспользуемых устройств от сети также защищает их от перегрева или скачков напряжения.

Часто бывает сложно отключить неиспользуемые электроприборы, но новое поколение интеллектуальных розеток предлагает решение, позволяющее устанавливать графики электропитания для каждой розетки.

6. Держите электрические устройства и розетки подальше от воды во избежание поражения электрическим током.

Вода и электричество плохо сочетаются. Чтобы соблюдать правила электробезопасности, держите электрическое оборудование в сухом месте и вдали от воды, чтобы предотвратить повреждение приборов и защитить себя от травм и поражения электрическим током. При работе с электроприборами важно, чтобы руки были сухими. Хранение электрического оборудования вдали от горшков с растениями, аквариумов, раковин, душевых и ванн снижает риск контакта воды и электричества.

7. Обеспечьте достаточное пространство для циркуляции воздуха в приборах, чтобы избежать перегрева.

Без надлежащей циркуляции воздуха электрическое оборудование может перегреться и вызвать короткое замыкание, что может стать причиной поражения электрическим током. Убедитесь, что в ваших приборах есть надлежащая циркуляция воздуха, и избегайте использования электрического оборудования в закрытых шкафах. Для обеспечения максимальной электробезопасности также важно хранить легковоспламеняющиеся предметы вдали от всех приборов и электроники. Обратите особое внимание на газовую или электрическую сушилку, так как для безопасной работы они должны располагаться на расстоянии не менее 30 см от стены.

8. Убедитесь, что все ваши вытяжные вентиляторы чистые, чтобы предотвратить опасность возгорания.

В некоторых приборах есть вытяжные вентиляторы, которые могут загрязняться или забиваться мусором, что затрудняет работу прибора. Это может сократить срок службы прибора и создать опасность для дома из-за перегрева или даже вызвать скопление опасных газов, которые могут привести к электрическому возгоранию. Регулярная чистка вытяжных вентиляторов помогает предотвратить такие опасности.

9. Для повышения электробезопасности всегда соблюдайте инструкции к устройству.

«Прочтите инструкции» должно быть первым в списке советов по электробезопасности дома. Понимание того, как безопасно использовать бытовую технику, улучшает как производительность вашего устройства, так и вашу личную безопасность. Если какой-либо прибор вызывает даже легкое поражение электрическим током, прекратите использовать его, пока квалифицированный электрик не проверит его на наличие проблем.

10. Будьте осторожны с нагревателями и водонагревателями, чтобы предотвратить возможные несчастные случаи.

Горючие предметы следует хранить вдали от переносных обогревателей и встроенных печей.В целях безопасности храните горючие материалы вдали от нагревательных приборов. Переносные обогреватели нельзя использовать вблизи занавесок, а во избежание опрокидывания их следует размещать только на устойчивой поверхности.

Кстати, знаете ли вы, на какую температуру настроен ваш водонагреватель? Установки высокой температуры влияют на потребление энергии водонагревателем и могут вызвать ожоги и непреднамеренное ошпаривание, особенно в домах с маленькими детьми.

Как человеческое тело использует электричество

Автор: Amber Plante

Электричество есть везде, даже в человеческом теле.Наши клетки предназначены для проведения электрических токов. Электричество требуется нервной системе, чтобы посылать сигналы по всему телу и в мозг, позволяя нам двигаться, думать и чувствовать.

Итак, как клетки контролируют электрические токи?

Элементы нашего тела, такие как натрий, калий, кальций и магний, обладают определенным электрическим зарядом. Почти все наши клетки могут использовать эти заряженные элементы, называемые ионами, для выработки электричества.

Содержимое клетки защищено от внешней среды клеточной мембраной.Эта клеточная мембрана состоит из липидов, которые создают барьер, через который только определенные вещества могут проникнуть внутрь клетки. Мало того, что клеточная мембрана действует как барьер для молекул, она также действует как способ для клетки генерировать электрические токи. Покоящиеся клетки заряжены отрицательно изнутри, а внешняя среда заряжена более положительно. Это происходит из-за небольшого дисбаланса между положительными и отрицательными ионами внутри и снаружи клетки. Клетки могут достичь разделения зарядов, позволяя заряженным ионам входить и выходить через мембрану.Поток зарядов через клеточную мембрану – это то, что генерирует электрические токи.

Клетки контролируют поток определенных заряженных элементов через мембрану с помощью белков, которые находятся на поверхности клетки и создают отверстие для прохождения определенных ионов. Эти белки называются ионными каналами. Когда клетка стимулируется, это позволяет положительным зарядам проникать в клетку через открытые ионные каналы. Затем внутренняя часть клетки становится более положительно заряженной, что вызывает дополнительные электрические токи, которые могут превращаться в электрические импульсы, называемые потенциалами действия.Наше тело использует определенные модели потенциалов действия, чтобы инициировать правильные движения, мысли и поведение.

Нарушение электрического тока может привести к болезни. Например, чтобы сердце могло перекачивать кровь, клетки должны генерировать электрические токи, которые позволяют сердечной мышце сокращаться в нужное время. Врачи могут даже наблюдать эти электрические импульсы в сердце с помощью аппарата, называемого электрокардиограммой или ЭКГ. Нерегулярные электрические токи могут помешать правильному сокращению сердечных мышц, что приведет к сердечному приступу.Это всего лишь один пример, показывающий важную роль электричества в здоровье и болезнях.

Ссылки
CrashCourse. «Нервная система, часть 2 – Действие! Потенциал! Ускоренный курс A&P №9 ». Видео на YouTube, 11:43. 2 марта 2015 г. https://www.youtube.com/watch?v=OZG8M_ldA1M.
Основы анатомии и физиологии. «Каналы с ограничением по напряжению и потенциал действия». McGraw-Hill Co., Видео. 2016. http://highered.mheducation.com/sites/0072943696/student_view0/chapter8/animation__voltage-gated_channels_and_the_action_potential__quiz_1_.html.
Нельсон, Дэвид Л. и Майкл М. Кокс. 2013. Принципы биохимии Ленингера, 6-е изд. Книга. 6-е изд. Нью-Йорк: W.H. Фриман и Ко. Doi: 10.1016 / j.jse.2011.03.016.

Блокировка / маркировка: Ответы по охране труда

Процессы блокировки и тегирования включают в себя нечто большее, чем просто блокировку переключателя. Это комплексные пошаговые процессы, включающие общение, координацию и обучение.

Обратите внимание на следующие определения из CSA Z460-13:

Пострадавшее лицо – лица, которые не принимают непосредственного участия в работах, требующих контроля опасной энергии, но которые находятся (или могут находиться) в рабочей зоне.

Уполномоченное лицо – лицо, обладающее квалификацией для контроля за опасными источниками энергии благодаря своим знаниям, обучению и опыту и назначенное для такого контроля.

Этапы программы блокировки / маркировки включают:

1. Подготовка к отключению

Уполномоченное лицо определит, какие источники энергии присутствуют и должны контролироваться; и, что более важно, определите, какой метод контроля будет использоваться. Этот шаг включает в себя выполнение наборов конкретных рабочих инструкций, в которых излагаются элементы управления и методы, необходимые для блокировки и маркировки системы перед выполнением каких-либо действий.

2. Уведомить всех затронутых сотрудников

Уполномоченное лицо сообщит следующую информацию для уведомления затронутых лиц:

  • Что будет заблокировано / помечено.
  • Почему он будет заблокирован / отключен.
  • Примерно как долго система будет недоступна.
  • Кто отвечает за блокировку / теги аут.
  • К кому обратиться за дополнительной информацией.

3. Выключение оборудования

Если система работает, ее следует выключить в обычном режиме.Используйте инструкции производителя или внутренние рабочие инструкции. Выключение оборудования включает в себя обеспечение того, чтобы органы управления были в выключенном положении, и проверка того, что все движущиеся части, такие как маховики, шестерни и шпиндели, полностью остановились.

4. Изоляция системы от опасной энергии

Точные письменные инструкции будут специфичными для данной системы на рабочем месте. Обычно используются следующие процедуры:

  • Электроэнергия – Переключите электрические разъединители в положение «выключено».Визуально убедитесь, что контакты выключателя находятся в выключенном положении. Зафиксируйте разъединители в выключенном положении.

Рисунок 1: Электрическая блокировка

  • Гидравлическая и пневматическая потенциальная энергия – Установите клапаны в закрытое положение и зафиксируйте их на месте. Сбросьте энергию, открыв клапаны сброса давления, а затем закрыв воздуховоды.

Рисунок 2: Гидравлическая и пневматическая блокировка

  • Механическая потенциальная энергия – осторожно высвободите энергию из пружин, которые все еще могут быть сжаты.Если это невозможно, заблокируйте детали, которые могут двигаться, если есть вероятность, что пружина может передавать ей энергию.
  • Гравитационная потенциальная энергия – Используйте предохранительный блок или булавку, чтобы предотвратить падение или перемещение части системы.
  • Химическая энергия – найдите линии подачи химикатов в систему, закройте и заблокируйте клапаны. По возможности, спускные линии и / или концы крышек для удаления химикатов из системы.

5. Рассеяние (удаление) остаточной или накопленной энергии

В общем, примеры включают:

  • Электрическая энергия – Чтобы найти конкретный метод разряда конденсатора для рассматриваемой системы, обратитесь к производителю за инструкциями.Многие системы с электрическими компонентами, двигателями или переключателями содержат конденсаторы. Конденсаторы хранят электрическую энергию. В некоторых случаях конденсаторы удерживают заряд и могут очень быстро выделять энергию (например, подобно вспышке фотоаппарата). В других случаях конденсаторы используются для устранения скачков и скачков напряжения и защиты других электрических компонентов. Конденсаторы должны быть разряжены в процессе блокировки, чтобы защитить рабочих от поражения электрическим током.
  • Гидравлическая и пневматическая потенциальная энергия – установка клапанов в закрытое положение и их фиксация на месте только изолируют линии от большего количества энергии, поступающей в систему.В большинстве случаев в трубопроводах все еще остается остаточная энергия в виде жидкости под давлением. Эта остаточная энергия может быть удалена путем удаления воздуха из трубопроводов через предохранительные клапаны. Проверьте сброс давления или используйте методы разрушения фланца. Обратитесь к производителю для получения более подробной информации или, если клапаны сброса давления недоступны, какие другие методы доступны.
  • Механическая потенциальная энергия – Осторожно выпустите энергию из пружин, которые все еще могут быть сжаты. Если это невозможно, используйте блоки, чтобы удерживать части, которые могут двигаться при высвобождении энергии.
  • Гравитационная потенциальная энергия – Если возможно, опустите деталь на высоту, где падение невозможно. Если это невозможно, обратитесь к производителю за инструкциями.
  • Химическая энергия – Если возможно, слейте воздух из линий и / или заглушек для удаления химикатов из системы.

6. Блокировка / маркировка

Когда источники энергии системы заблокированы, необходимо соблюдать особые правила, которые необходимо соблюдать, чтобы убедиться, что блокировка не может быть снята, и система не может быть задействована случайно.Эти правила включают:

  • Каждый замок должен иметь только один ключ (мастер-ключи не допускаются).
  • В системе должно быть столько блокировок, сколько людей работают над ней. Например, если для технического обслуживания требуется 3 рабочих, тогда должно быть 3 блокировки – каждый из сотрудников должен установить свою СОБСТВЕННУЮ блокировку на систему. Блокировки могут быть сняты только теми, кто их установил, и их следует снимать только с помощью определенного процесса – см. Шаг 9 ниже.

Рисунок 3: Пример нескольких блокировок на теге блокировки

7.Проверка изоляции

Перед началом любых работ убедитесь, что система правильно заблокирована. Проверка может происходить несколькими способами:

  • Машины, оборудование или элементы управления процессом (кнопки, переключатели и т. Д.) Задействованы или активированы, и результат будет наблюдаться. Отсутствие ответа означает, что изоляция подтверждена. Верните органы управления в безопасное положение (выключено).
  • Визуальный осмотр:
    • Электрические соединения, чтобы убедиться, что они открыты.
    • Подвесные части опускаются в исходное положение или блокируются для предотвращения движения.
    • Другие устройства, ограничивающие движение машины или технологического процесса.
    • Позиционирование клапана для двойной блокировки и выпуска воздуха (для труб или каналов) – закрытие двух клапанов на участке линии, а затем выпуск воздуха (или удаление воздуха) на участке трубопровода между двумя закрытыми клапанами.
    • Наличие сплошной пластины, используемой для полного закрытия линии, называемой заглушкой линии (для труб или воздуховодов).
    • Любой другой приемлемый метод энергетической изоляции.
  • Тестирование оборудования:
    • Тестовая схема (должна выполняться сертифицированным электриком) – примечание: оборудование с конденсаторами необходимо циклически включить, пока вся энергия не будет полностью разряжена.
    • Проверьте манометры, чтобы убедиться, что гидравлическая и пневматическая потенциальная энергия снята.
    • Проверьте датчики температуры, чтобы убедиться в отводе тепловой энергии.

Выберите метод, который наилучшим образом обеспечит изоляцию энергии в системе, не создавая других опасностей во время проверки.

8. Выполнение операции обслуживания или обслуживания

Завершите операцию, которая требовала запуска процесса блокировки.

9. Удаление устройств блокировки / маркировки

Чтобы удалить замки и метки из системы, которая теперь готова к повторному вводу в эксплуатацию, можно использовать следующую общую процедуру:

  • Осмотрите рабочую зону, чтобы убедиться, что все инструменты и предметы были удалены.